数学

ひねられても応用できる数学の勉強法2|証明編2

ひねられても応用できる数学の勉強法1|証明編1】の続きです.

前の記事では,「解答を思いつくまでのプロセス」と「模範解答」は違うと書きました.そして,実際に,1次関数の簡単な問題を例に,証明問題を解くときには[結論]から逆にたどる逆算で考えるのだと書きました.

そして,逆算でたどっていけばいつかは仮定にたどり着くはずですから,解答はそこから逆に書けばいいわけです.

この記事では,少し別の例について逆算の考え方をみます.

[問] 実数a,b,ca+b+c=0をみたすとき,a^2-bc=b^2-ca=c^2-abであることを示せ.

続きを読む

ひねられても応用できる数学の勉強法1|証明編1

証明問題は数学の中でも,とても重要です.しかし,証明問題が苦手という人は少なくありません.

そして,証明問題が苦手の人の多くは「何をしたらいいのか分からない」という理由のようです.また,問題集の解答を見ても「なぜこんな解答が思いつくんだろう……」となってしまうことも多いようです.

ここに数学が苦手な要因があるようのです.

大切なことは,解答を思いつくためのプロセスをしっかり考えることです.

【関連記事:ひねられても応用できる勉強法|常に意識すべき2つのこと

続きを読む

ページ

トップへ

記事

一覧へ

オススメ

参考書

Twitterを

フォロー

偏差値80

を目指す