三角関数3
「ラジアン」の考え方・公式をシンプルに理解する

三角関数
三角関数

小学校以来,我々は$30^\circ$のように「〜度」という単位で角度の大きさを表してきました.

この「〜度」という角度の大きさの表し方を度数法といいますが,度数法は数学的にはあまり都合の良い角度の表し方ではありません.

一方,より数学的に扱いやすい角度の大きさの表し方として弧度法があります.

弧度法は度数法よりも都合が良いことが多く,弧度法を使えば「扇型の面積」などの計算も簡単にできます.

この記事では,

  • 弧度法の定義
  • 弧度法の具体例
  • 弧度法に関する公式

を順に説明します.

弧度法の定義

名前の通り,弧度法は円の「弧」をもとに定義されます.

半径$1$の扇形の弧の長さが$\theta$であるとき,この扇形の中心角の大きさを$\theta[\mrm{rad}]$と定める.ただし,$\mrm{rad}$は「ラジアン(radian)」と読む.

Rendered by QuickLaTeX.com

この角度の大きさの表し方を弧度法という.

この定義から,半径$1$の円においては,

  • 中心角が$\theta[\mrm{rad}]$
  • 弧の長さが$\theta$

はどちらも同じ意味であることになりますね.

また,「弧度法」においては,単位の$[\mrm{rad}]$を省略することが多いです.

つまり,「中心角$\theta[\mrm{rad}]$」というのと「中心角$\theta$」というのは,同じことを意味します.

弧度法の具体例

例1

半径$1$,中心角が$\dfrac{5\pi}{6}$の扇形を考えましょう.

Rendered by QuickLaTeX.com

半径$1$の扇形においては$(\text{中心角})=(\text{弧の長さ})$なので,上図の扇形の弧の長さ$\ell$は

    \begin{align*}\ell=\dfrac{5\pi}{6}\end{align*}

です.

例2

半径$2$,中心角が$\dfrac{\pi}{3}$の扇形を考えましょう.

Rendered by QuickLaTeX.com

半径$1$の扇形においては$(\text{中心角})=(\text{弧の長さ})$でしたが,半径が$2$になれば相似を考えて弧の長さも$2$倍になります.

ですから,上図の扇形の弧の長さ$\ell$は

    \begin{align*}\ell=2\cdot\dfrac{\pi}{3}=\dfrac{2\pi}{3}\end{align*}

となります.

度数法と弧度法の関係

度数法と弧度法の関係は下表のようになります.

度数法と弧度法の関係
度数法 $0^\circ$ $30^\circ$ $45^\circ$ $60^\circ$ $90^\circ$ $120^\circ$ $135^\circ$ $150^\circ$ $180^\circ$
弧度法 0 $\dfrac{\pi}{6}$ $\dfrac{\pi}{4}$ $\dfrac{\pi}{3}$ $\dfrac{\pi}{2}$ $\dfrac{2\pi}{3}$ $\dfrac{3\pi}{4}$ $\dfrac{5\pi}{6}$ $\pi$

コツとして度数法での$180^\circ$と弧度法での$\pi$が一致することを意識しておけば,

  • 6等分すれば$30^\circ$は$\dfrac{\pi}{6}$に等しい

    Rendered by QuickLaTeX.com

  • 4等分すれば$45^\circ$は$\dfrac{\pi}{4}$に等しい

    Rendered by QuickLaTeX.com

  • 3等分すれば$60^\circ$は$\dfrac{\pi}{3}$に等しい

    Rendered by QuickLaTeX.com

となることがすぐに分かりますね.

また,2倍すれば$360^\circ$は$2\pi$に等しいことも分かりますね.

弧度法の公式

弧度法について

  • 弧の長さの公式
  • 面積の公式

は基本的なので,当たり前にしておきましょう.

弧の長さの公式

半径$r$,中心角$\theta$の扇形について,弧の長さ$\ell$は

    \begin{align*}\ell=r\theta\end{align*}

で得られる.ただし,$0<$

半径$1$,中心角$\theta$の扇形$\mrm{A}$と半径$r$,中心角$\theta$の扇形$\mrm{B}$は相似で相似比は$1:r$である.

Rendered by QuickLaTeX.com

よって,$1:r=\theta:\ell\iff\ell=r\theta$を得る.

上の例2でも同じ考えで弧の長さを求めましたね

面積の公式

半径$r$,中心角$\theta$の扇形について,面積$S$は

    \begin{align*}S=\frac{1}{2}r^{2}\theta\end{align*}

で得られる.

一般に,半径$r$,弧の長さ$\ell$の扇形の面積は$\dfrac{1}{2}r\ell$であることに注意する.

Rendered by QuickLaTeX.com

上で示した公式から半径$r$,中心角$\theta$の扇形の弧の長さは$r\theta$だから,面積$S$は

    \begin{align*}S=\frac{1}{2}r\cdot r\theta=\frac{1}{2}r^2\theta\end{align*}

である.

コメント